| dc.contributor.author | Bolatbek, Milana | |
| dc.contributor.author | Mussiraliyeva, Shynar | |
| dc.contributor.author | Sagynay, Moldir | |
| dc.date.accessioned | 2026-01-02T10:28:10Z | |
| dc.date.available | 2026-01-02T10:28:10Z | |
| dc.date.issued | 2025-12-30 | |
| dc.identifier.issn | 1731-7533 | |
| dc.identifier.uri | http://hdl.handle.net/11089/57150 | |
| dc.description.abstract | Modern text data processing and classification methods require extensive use of machine learning and neural networks. Categorizing text into different classes has become a crucial task in many fields. This paper presents a multi-class text classification model utilizing a Modified TF-IDF (MTF-IDF) approach in combination with Long Short-Term Memory (LSTM) neural networks, XGBoost, and MLPClassifier algorithms. Additionally, the study explores the integration of TF-IDF and CountVectorizer (MTF-IDF) methods for text vectorization, aiming to enhance classification efficiency.The research findings indicate that the LSTM model achieved the highest accuracy rate of 89%, demonstrating superior performance. The MLPClassifier model achieved 85% accuracy, while XGBoost obtained 81% accuracy. Moreover, the integration of TF-IDF and MTF-IDF methods significantly improved the detection of rare but essential words, enhancing the overall performance of the models.This study is dedicated to addressing the problem of automated detection of harmful content in the Kazakh language. Hate speech in the digital space refers to any online material that harms individuals or communities through aggression, manipulation, discrimination, or the intentional spread of socially damaging narratives. The results provide a solid foundation for future research aimed at the early identification and mitigation of hate speech in the digital space, contributing to a safer online environment. | en |
| dc.language.iso | en | |
| dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
| dc.relation.ispartofseries | Research in Language | en |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
| dc.subject | hate speech | en |
| dc.subject | bullying | en |
| dc.subject | violent extremism | en |
| dc.subject | TF-IDF | en |
| dc.subject | MTF-IDF | en |
| dc.subject | LSTM | en |
| dc.subject | MLPClassifier | en |
| dc.title | Machine Learning-Based Hate Speech Detection in the Kazakh Language | en |
| dc.type | Article | |
| dc.page.number | 311-319 | |
| dc.contributor.authorAffiliation | Bolatbek, Milana - Al-Farabi Kazakh National University | en |
| dc.contributor.authorAffiliation | Mussiraliyeva, Shynar - Al-Farabi Kazakh National University | en |
| dc.contributor.authorAffiliation | Sagynay, Moldir - Al-Farabi Kazakh National University | en |
| dc.references | Gorwa R., Binns R., Katzenbach C. Algorithmic content moderation: Technical and political challenges in the automation of platform governance //Big Data & Society. – 2020. – Т. 7. – №. 1. – С. 2053951719897945. | en |
| dc.references | Barakhin V. B. et al. Methods for detecting destructive information. // Physics Journal: Conference Series. – IOP Publishing, 2019. – Vol. 1405. – No. 1. – P. 012004. | en |
| dc.references | Kumisbekov S. K., Sabitov S. M., Akimzhanova M. T. Issues of preventing cyberbullying at the present stage. // Bulletin of the Karaganda University “Law Series”. – 2022. – Vol. 105. – No. 1. – Pp. 85–95. | en |
| dc.references | Alqahtani A. F., Ilyas M. A Machine Learning Ensemble Model for the Detection of Cyberbullying //arXiv preprint arXiv:2402.12538. – 2024. | en |
| dc.references | Li J. R., Mao Y. F., Yang K. Improvement and application of TF* IDF algorithm //Information Computing and Applications: Second International Conference, ICICA 2011, Qinhuangdao, China, October 28-31, 2011. Proceedings 2. – Springer Berlin Heidelberg, 2011. – С. 121-127. | en |
| dc.references | Fan H., Qin Y. Research on text classification based on improved tf-idf algorithm //2018 International Conference on Network, Communication, Computer Engineering (NCCE 2018). – Atlantis Press, 2018. – С. 501-506. | en |
| dc.references | Shakil M. H., Alam M. G. R. Toxic Voice Classification Implementing CNN-LSTM & Employing Supervised Machine Learning Algorithms Through Explainable AI-SHAP //2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET). – IEEE, 2022. – С. 1-6. | en |
| dc.references | Schnitzler K. et al. Using Twitter™ to influence research: discussing strategies, opportunities, and challenges. // International Journal of Nursing Studies. – 2016. – Vol. 59. – Pp. 15–26. | en |
| dc.references | Bolatbek M. et al. Kazakh Language Dataset for Hate Speech Detection on Social Media Text //2024 IEEE 9th International Conference on Computational Intelligence and Applications (ICCIA). – IEEE, 2024. – С. 94-98. | en |
| dc.contributor.authorEmail | Bolatbek, Milana - bolatbek.milana@gmail.com | |
| dc.contributor.authorEmail | Mussiraliyeva, Shynar - mussiraliyevash@gmail.com | |
| dc.contributor.authorEmail | Sagynay, Moldir - sagynaymoldir11@gmail.com | |
| dc.identifier.doi | 10.18778/1731-7533.23.19 | |
| dc.relation.volume | 23 | |