Pokaż uproszczony rekord

dc.contributor.authorBolatbek, Milana
dc.contributor.authorMussiraliyeva, Shynar
dc.contributor.authorBaisylbayeva, Kymbat
dc.date.accessioned2026-01-02T10:28:11Z
dc.date.available2026-01-02T10:28:11Z
dc.date.issued2025-12-30
dc.identifier.issn1731-7533
dc.identifier.urihttp://hdl.handle.net/11089/57152
dc.description.abstractModern information technologies enable the automatic analysis of textual data to detect extremist and propagandistic content. This paper examines deep learning methods and transformers models for the automatic classification of ideologically charged texts in the Kazakh language. A comparison was conducted between neural network models (CNN, BiLSTM, GRU, Hybrid CNN+BiLSTM) and modern transformers (DistilBERT). The performance evaluation of the models was based on accuracy, recall, precision, and F1-score metrics, as well as error analysis. Experimental results showed that hybrid CNN+BiLSTM demonstrated the highest accuracy (95.11%), outperforming other models. CNN, BiLSTM and GRU also achieved high results (92-93%), making them effective for this task. Among transformers, DistilBERT proved to be the most balanced (85.74%). This study demonstrates that hybrid neural network models (CNN+BiLSTM) are the most effective solution, while DistilBERT performs best among transformer models. The findings can be utilized for developing automatic monitoring and filtering systems for Kazakh-language texts, capable of efficiently identifying ideologically charged content.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesResearch in Languageen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectideological text classificationen
dc.subjectdeep learningen
dc.subjecttransformersen
dc.subjectpropagandaen
dc.subjectradicalizationen
dc.subjectrecruitmenten
dc.titleDetection and Classification of Ideological Texts in the Kazakh Language Using Machine Learning and Transformersen
dc.typeArticle
dc.page.number341-353
dc.contributor.authorAffiliationBolatbek, Milana - Al-Farabi Kazakh National Universityen
dc.contributor.authorAffiliationMussiraliyeva, Shynar - Al-Farabi Kazakh National Universityen
dc.contributor.authorAffiliationBaisylbayeva, Kymbat - Al-Farabi Kazakh National Universityen
dc.referencesMussiraliyeva, S, Baisylbayeva, K., Bolatbek, M., Yeltay, Z., Decoding Ideology: Machine learning-based Detection of Extremist Content. 2024 International Conference on Intelligent Computing, Communication, Networking and Services, ICCNS 2024. doi 10.1109/ICCNS62192.2024.10776480en
dc.referencesImran Awan, Cyber-Extremism: Isis and the Power of Social Media, Social Science and Public Policy, Volume 54, pages 138–149, (2017), https://link.springer.com/article/10.1007/s12115-017-0114-0en
dc.referencesSaifudeen, O. A. (2014). The Cyber Extremism Orbital Pathways Model. RSIS Working Paper No. 283, S. Rajaratnam School of International Studies, Nanyang Technological University, Singaporeen
dc.referencesMukhamedzhanova, L. A., Kadirova, D. S., Agzamova, N. S., Tulaev, A. I., Rajabov, S. S., Alimov, S. K. (2019). Formation of Cyber Space, Protecting Youth From the Danger of Cyber Extremism. International Journal of Recent Technology and Engineering (IJRTE), 8(2 S4): 612-616. DOI:10.35940/ijrte.B1121.0782S419en
dc.referencesRashid, W. (2023). Using Artificial Intelligence to Combat Extremism. Pakistan Journal of Terrorism Research (PJTR), 5(2)en
dc.referencesTahat, K., Habes, M., Mansoori, A., Naqbi, N., Al Ketbi, N., Maysari, I., Tahat, D., & Altawil, A. (2024). Social media algorithms in countering cyber extremism: A systematic review. Journal of Infrastructure, Policy and Development, 8(8), 6632. https://doi.org/10.24294/jipd.v8i8.6632en
dc.referencesLahnala, A., Varadarajan, V., Flek, L., Schwartz, H. A., & Boyd, R. L. (2025). Unifying the Extremes: Developing a Unified Model for Detecting and Predicting Extremist Traits and Radicalization. Proceedings of the International AAAI Conference on Web and Social Media (ICWSM), 19(1). https://doi.org/10.1609/icwsm.v19i1.35860en
dc.referencesBerjawi, O., Fenza, G., & Loia, V. (2023). A Comprehensive Survey of Detection and Prevention Approaches for Online Radicalization: Identifying Gaps and Future Directions. IEEE Access, 11, 1-1. https://doi.org/10.1109/ACCESS.2023.3326995en
dc.referencesGovers, J., Feldman, P., Dant, A., & Patros, P. (2023). Down the Rabbit Hole: Detecting Online Extremism, Radicalisation, and Politicised Hate Speech. ACM Computing Surveys, 55(14s). https://doi.org/10.1145/3583067en
dc.referencesAldera, S., Emam, A., Al-Qurishi, M., Alrubaian, M., & Alothaim, A. (2021). Online Extremism Detection in Textual Content: A Systematic Literature Review. IEEE Access, 9, 42384-42396. https://doi.org/10.1109/ACCESS.2021.3064178en
dc.contributor.authorEmailBolatbek, Milana - bolatbek.milana@gmail.com
dc.contributor.authorEmailMussiraliyeva, Shynar - mussiraliyevash@gmail.com
dc.contributor.authorEmailBaisylbayeva, Kymbat - baisylbaeva.k@gmail.com
dc.identifier.doi10.18778/1731-7533.23.21
dc.relation.volume23


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0